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A structural analysis is given of the optical theorem in the S-matrix approach 
to mutually interacting quantum fields in classical Robertson-Walker universes. 
As a case study, the 4~tp2-interaction of conformally coupled massive (~) and 
massless (~) Klein-Gordon particles is studied. Based on the outgoing massless 
particles as indicator configuration, the physical interpretation is reduced to the 
corresponding added-up probabilities. Several examples are discussed in an 
in-in scheme which has the advantage that only a few non-Minkowskian in-in 
Feynman diagrams are involved. 

1. I N T R O D U C T I O N  

A full  q u a n t u m  field theo ry  o f  several  mu tua l ly  in terac t ing  q u a n t u m  
fields in given class ical  ex te rna l  g rav i ta t iona l  fields is needed  when  s tudying  
h igh-energy  processes  in very ear ly cosmic  t ime. In several  case s tudies  
( Audre t s ch  and  Spangeh l ,  1985, 1986, 1987; Audre t sch  et al., 1987) we have 
d i scussed  the ques t ion :  H o w  are  M i n k o w s k i a n  cross sect ions  and  decay  
rates mod i f i ed  in an e x p a n d i n g  universe?  To do  so, we have a s sume d  cosmic  
e x p a n s i o n  laws and  mu tua l  in te rac t ions  which  a l low an exact  t r ea tmen t  o f  
the  effects up  to a cer ta in  o r d e r  o f  the  coup l ing  pa ramete r .  See these  ar t ic les  
for  no t ions  and  conven t ions  and  for  the unde r ly ing  concept .  F o r  a survey 
o f  the  l i te ra ture  see also the  reviews in Birrell  (1981), Birrell  and  Davies  
(1982), and  F o r d  (1984). 

In  the  fo l lowing  I t ry to enr ich  the  ca lcu la t ion  scheme in s t ruc tura l ly  
d i scuss ing  the op t ica l  t h e o r e m  in cosmolog ica l  universes .  Because  it has a 
d i rec t  f o rmu la t i on  by  i n - i n  t r ans i t ion  ampl i tudes ,  it fits very well  into the 
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in-in approach and can immediately be reduced to added-up transition 
probabilities. I will show this for several processes in detail. 

As unquantized cosmological background I consider Robertson- 
Walker universes. They are conformally flat. I study the interaction 

~1 = hf(x  )chO 2 (1.1) 

[where f ( x )  is some function of x and A is the coupling parameter] between 
two types of neutral scalar particles described by the massive Klein-Gordon 
field ~b and the massless field ~O. The corresponding field equations are 
assumed to be the massive and massless conformally coupled Klein-Gordon 
equations. Because of this choice, the massless particles realize the curved 
space-time only via the mutual interaction with the c,b-particles. Furthermore, 
the ~b-particles will be represented in the calculations as in the Minkowski 
space essentially by plane waves. 

I refer to the metric of the Robertson-Walker universe in its conformally 
flat form, the conformal time being r/. The expansion law a(r/) may remain 
unspecified, but the in- and out-region (r/-~-co, r /~  +co) must allow the 
definition of particles. 

The main consequence of the specifications above is that the energy is 
not conserved. This leads to important non-Minkowskian contributions to 
the effects. But there are conserved 3-momentum parameters p . . . .  , k , . . . .  
The measured 3-momentum is p /a (~) .  Massive particles are created out of 
the vacuum also when the mutual interaction between the O- and ~O-particles 
is switched off (zeroth-order process). There is no corresponding creation 
of massless ~-particles out of the curved background. 

The quantum field-theoretic situation is non-Minkowskian, because 
there are two different definitions of massive particles in the in- and out- 
region specified by the particular behavior of the Klein-Gordon solutions 
for r / ~ - c o  and ~/+ +co, respectively. There are two complete sets of 
orthonormal solutions {Up} and {Up ut} describing 0-particle modes in the 
respective regions. Expand the massive field operator ~b according to 

in in ..~ in~" in , 49(x)=•[apUp(X) ap Up(X) ] (1.2) 
P 

with operators satisfying the usual commutation relations 

in';" [a~ n, a ,  ] = 6pq, rest = 0 (1.3) 

The same is done for the out-region with regard to {u~Ut}, leading to the 
operators a~ ut. 

For the massless 0-particles the particle concepts in the in- and out- 
region are, because of the conformal invariance, based on the same set 
{Va(X)} of solutions which are proportional to exp(ikx). The particle 
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operators in the two asymptotic regions obtained from a decomposition of  
qs agree, 

b~ n = b~ ut= bp (1.4) 

The states with a definite number of particles refer to one of the 
respective particle concepts. For the in-region we introduce the in-vacuum 
state 

a~10in)=0  , b~nl0in)= 0 Vp, k (1.5) 

and particle states according to 

in+ /n in ~" 10 in) ]e~s * in)= ap . . . .  k "-" 

=l lp~. . .  akO...lin) (1.6) 

Corresponding definitions are made with reference to the out-region. 

2. ADDED-UP TRANSITION PROBABILITIES AND INDICATOR 
CONFIGURATIONS 

We are working in the interaction picture using an in-out scheme based 
on the S-matrix, 

S=lim T"exp[i f s exp(-el~7]) dax ] ~-~o 

= 1 + iT= 1 + iT(l)+ iT(2)+ O(A 3) (2.1) 

is the time-ordering operator; e is the adiabatic switch-off parameter. 
The order with regard to A is indicated in brackets. 

As shown in Audretsch and Spangehl (1985), an in-out  transition 
probability amplitude with states containing a finite number of particles 
loses mathematically its sense in our space-time. From the physical point 
of view this is a consequence of  the fact that the gravitational background 
causes the creation of massive particles in all modes and that a particle 
counter for massive particles always registers the combined effect of back- 
ground and mutual interaction with no possibility of discrimination. On 
the other hand, massless particles registered in the out-region have never 
come out of  the background. They always go back to the mutual interaction 
and are therefore good indicators for the outcome of this interaction. If 
one wants to have statements regarding the mutual interaction, with a clear 
operational meaning, one must refer to the massless particles. 
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The concept of the added-up probability introduced in Audretsch and 
Spangehl (1985) is based on this. It starts with in-out amplitudes, but asks 
for the appearance of a particular indicator configuration in the out-region, 

wadd(sO[ c4~rO) = Z [(out dOs*[S[c+r * in)l 2 (2.2) 
d 

It contains a sum over all outgoing massive states and answers the question: 
What is the probability that a particular state of massless particles Is ~ out) 
will be found in the out-region regardless what has happened to the massive 
states? When there is no massless particle going out, we write w add= 
(0~[c%~). 

As shown in Audretsch and Spangehl (1985), w add can be reduced to 
in-in amplitudes 

wadd(S*[CC~r *) = Y~ [(in d~s~'[S]ce~r~ in)] 2 (2.3) 
d 

Characteristic for this and other in-in expressions is that they can be 
obtained in working out only a few in-in transition amplitudes�9 The second 
advantage is that this can be done in close analogy to the procedure everyone 
is used to in the Minkowskian situation�9 In-in Feynman diagrams can be 
constructed in the usual way. There is 3-momentum parameter conservation. 
But note that because of the lack of energy conservation, additional diagrams 
may appear�9 There is a Wick theorem for in-operators. The in-Feynman 
propagator for the &-field is 

�9 in A , . zAF (x, y) = (in 0[ T&~n(x)&'n(y)[O in) 

= ~ i n ( x )  ~ i n ( y )  ( 2 . 4 )  

When transcribing a diagram into integrals, one has to take into account 
that instead of the Minkowski-space plane waves, now the in-particle 

in have to be taken, where the latter is proportional solutions u~(x) and Vq 
to a plane wave. 

Because the added-up probability w add is a probability with direct 
operational meaning, I will base the subsequent physical discussion of the 
optical theorem on this concept and express terms which are to be interpreted 
by w ad~. The starting point will always be the analysis of the contributing 
in-in Feynman diagrams�9 

3. THE OPTICAL T H E O R E M  

Related to the completeness of the in- and out-states is the unitary of 
the S-matx~x. We have 

S*S = 1 (3.1) 
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or, with (2.1), 

and therefore 

T * T  = - i( T - T*) (3.2) 

(in al T* Tla in)= 2 Im(in a[ T[a in) (3.3) 

Inserting on the left-hand side the representation of the unity operator by 
in-states, we obtain the optical theorem which represents the restrictions 
implied by the unitarity of the S-matrix: 

[(in eCs~ I Tld% ~ in)l 2 = 2 Im(in d%~ rid%* in) (3.4) 
e,s 

Introducing added-up transition probabilities gives the form 

waaa( s~ l d% ~') = 2 Im(in d6 r~ I Tld6r ~" in) (3.5) 
s 

The fact that the theorem can be formulated within the in-in formalism has 
once more the consequence that in a certain order of the coupling parameter 
the equation contains only a very limited number of terms. This will be 
demonstrated below. 

The optical theorem relates the imaginary part of an in-in forward 
scattering amplitude with the total added-up transition probability into all 
massless states which can be reached according to the interaction. But in 
contrast to the situation in Minkowski space, we have no energy conserva- 
tion. The sum on the left-hand side of (3.5) will therefore in general not 
degenerate to one term. For the same reason, the right-hand side of (3.5) 
may consist of more than one amplitude, because T will contain several 
terms according to Wick's theorem. This restricts the possibilities of a direct 
application of the optical theorem in curved space-time quantum field 
theory. In order to obtain expressions which can be applied to specific 
physical situations, one has to combine several results. I will demonstrate 
these characteristics of the optical theorem in the following examples. 

4. TRANSITIONS FROM THE VACUUM 

For the vacuum as in-going state the optical theorem (3.4) reduces, with 

I(in e%~ TC1)lO in)l z 
e,s 

E I( in  '~ ~ ~' = l _ q l  t lq_t]T(1)[0 in)12+Y~ [(in I~]T(1)I0 in)l 2 (4.1) 
q , t  q 

to 

2 Im(in 01T(2)I0 in)= • 1(la)[2+2 I(tb)l 2 (4.2) 
q , t  q 
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(a) (b) 
Fig. 1. 

where (la) denotes the in-in matrix element obtained in working out the 
diagram of Figure la according to the in-in Feynman rules. The evaluations 
of the in-in Feynman diagrams of the other figures are denoted correspond- 
ingly. 

With regard to a physical interpretation, we obtain that the imaginary 
part of the vacuum-vacuum amplitude in the in-in scheme is equal to the 
sum out of the total added-up amplitude for the transition of the vacuum 
into a state with two massless particles and of the transition into a state 
with no massless particles: 

2 Im(in 01T(2)]0 in) = ~ wa~d(lt~lq~_t[0)(2)+ wadd(0& ] 0)(2) (4.3) 
q,t 

Note that according to the definition of the added-up probability, there 
may be many massive particles going out as the result of the mutual 
interaction. There are two vacuum-vacuum graphs contributing to the 
imaginary part (see Figure 2): 

Im(in 01T(2)]0 in) = Im(2a)+ Im(2b) (4.4) 

A physically reasonable quantity which can in this context be worked 
out on the basis of the optical theorem is the total added-up probability 
for the decay of the vacuum into states with massless particles. Because of 
(4.3), this is given by 

Y~ wadd(l~lL,10) (2)= 2 Im(in 01T(2)]O i n ) - ~  [(lb)] 2 (4.5) 
q,t q 

Equation (4.4) will be useful in the following considerations. 

5. DECAY OF A PAIR OF MASSLESS PARTICLES 

The possible transitions according to the in-in scheme for the case of 
two massless particles going in are 

Y~ ](in e6s~']T<l)ll~l~ in)[2= 1(3)1=+ Y~ I(la)12+Y~ I(lb)12+Z 1(5>12+ Y~ (5> 2 
e , s  q,t q k k o l  

(5.1) 

O 
(a) (b) 

Fig. 2. 



Optical Theorem in Quantum Field Theory 963 

Fig. 3. 

where reference is made to Figures 3 and 5. The amplitude (3) is related to 
the probability that no massless particles reach the out-region: 

wadd(0* I lk*ll*) ~2)= 1(3)t 2 (5.2) 

The matrix elements (la), (lb) and (5) have to be included in (5.1), because 
the possibility ~ that the two massless particles and the possibilities ff that 
one of the massless particles reappear in the out-region are contained in 
the sum 

wa~176 k~l~l lk~lf) <2)= Z I(la)lE+E IOb)l = (5.3a) 
q,t q 

ff(l~*l 1~) <2~ : ~ ,  ](5)[: (5.3b) 
k 

Inserting this in (5.1), one finds that the optical theorem obtains in this 
case the operational interpretation 

2 Im(in 1 ~1,~1 T~=)11~1,~ in) = wadd(0q'[1 k~llq')(2) d - wadd(1 q' '  r ~ ' ~ ( 2 ) k  x , I X k X l  ] 

+ ff(lk~[1 k+)~2)+ ff(l~ll~) <2) (5.4) 

For the imaginary part we have 

Im(in ~k'll * 1 *, T<2) I ,  1 k* 1 I* in) = Im(in 01T<z)I0 in) 

+ Im(4a) + Im(4b) 

+ Im(6a) + Im(6b) 

+ Im(6a)+ Im(6b) (5.5) 
I~-->k I~->k 

Equating (5.5) and (5.4), we obtain with (4.2), (5.3), (6.2) and (6.6) 
(see Figure 4) 

Wadd(0~' ] 1 k* 1 ~*)~2) = 2 Im(4a) + 2 Im(4b) (5.6) 

(a) (b) 
Fig. 4. 
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Fig. 5. 

As a physically useful result, we have found that the probability of the 
annihilation of two massless particles is given by the imaginary part of the 
matrix element of the forward scattering of the two massless particles in 
second order. This result is of  the same structure as in Minkowski space. 

6. EMISSION OF A MASSIVE PARTICLE 

If one massless particle is going in, the left-hand side of the optical 
theorem (3.4) decomposes according 

[(in e4"s~'[T(1)[l~ in)[2 = Y~ 1(5)12+ 2 I(la)12+~ [(lb)[ 2 (6.1) 
e,s k q, t  q 

See Figure 5 for reference. The squared amplitudes can be interpreted 
according to 

wadd(l~ I 1~) (2) = ~  1<5>12 (6.2) 
k~ l  k 

waad(ll~ I 1~)(2) = Y~ I(la)]2+Y~ [(lb)] 2 (6.3) 
q, t  q 

as added-up probabilities, where (6.3) is the probability to find the massless 
particle undisturbed with the same 3-momentum in the out-region. With 
(3.4) we get for the optical theorem 

2 Im(in Ii ~ [ T(2)II~ i n ) = ~  wadd(lk ~ [ 1~) 2 (6.4) 
k 

But not that also the matrix elements (2a) and (2b) contribute to  this 
imaginary part: 

Im(in ll~[T(2)llfin) Im(in T (2) = 01 10 in) + Im(6a)+ Im(6b) (6.5) 

Reference is made to Figure 6. Equating (6.4) and (6.5), we obtain with 

(a) (b) 
Fig. 6. 
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Fig. 7. 

(6.3) and (4.2) a more specific result: 

wadd(1 k~l 1 ~)(2) = 2 Im(6a) + 2 Im(6b) (6.6) 
k#l 

Because of 3-momentum conservation, the left-hand side may, according 
to the indicator configuration involved, be interpreted as the total probability 
for the emission of a massive particle by a massless particle. Now only the 
diagrams of Figures 6a and 6b are to be worked out. These second-order 
in-in self-energy transitions of massless particles represent second-order 
forward scattering in the in-in scheme in a closer sense as compared to 
(6.4). Because of conformal invariance, their evaluation is similar to the 
corresponding calculation in the Minkowski space. 

7. DECAY OF A MASSIVE PARTICLE 

For the case of one massive particle going in, the following diagrams 
are involved: 

Y, ](in e*s*lT~')ll ~ in)t2 = 2 Im(in lp~l T<2)llp~ in) 
e ,s  

= Z  1(7)12+ Z I(la)l~+Z Klb)l=+[(8)[ 2 (7.1) 
t q,t q 

where reference is made to Figures 1, 7, and 8. The connection with a 
physical interpretation can be established using 

~ .  a d d / l q J l O  (b (2) w ~1, xq_,l E 1(7)1=+2 I(la)l 2 lp ) = (7.2) 
t,q t t,q 

and 

wadd(0~ I lp~) (2) = • I(lb>12+ 1(8>12 (7.3) 
q 

Fig. 8. 
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Fig. 9. 

The total added-up probability of (7.2) has explicitly been worked out and 
discussed for particular expansion laws in Audretsch et  al. (1987). The 
optical theorem takes the form 

2 Im(in ~ (2) q5 w a d d ( o ~ p  �9 a d d ( 1  &l~,  ~b)(2) lp lT  [lp in)= 11~) (2 )+~  "I ~lt lq-t 1 (7.4) p /  
t,q 

The imaginary part is based on the diagrams of  Figures 1 and 9: 

Im(in 1 ~] T(2)]l ~ in) = Im(in 0] T(2)]0 in) + Im(9) (7.5) 

Again one may like to obtain a more specific expression. To try this, 
we equate (7.1) and (7.5) and use (4.2): 

Z l(7)l 2 = 2 Im(9) -1(8)12 (7.6) 
t 

Because of  

Wadd(1 t* 1Lt [ 1 ~)(2) __ wadd(1 t* 1 0*-t I0) (2) = ](7)[ 2 (7.7) 

this takes the form 
r a d d r . q / , q J  1~)(2) Et,~ t i t  ~p-tl --wadd(l~l~_tl0)(2)]=2Im(9)--](8)[ 2 (7.8) 

t 

As compared to (7.2), according to (7.7), reference is now solely made to 
the diagram of Figure 7. Because the probability that the two massless 
particles of the indicator configuration are produced out of the vacuum is 
subtracted, we have good reasons to call the left-hand side of (7.8) the total 
probability of a massive particle to decay into two massless particles. It is 
a disadvantage of formula (7.8) that in addition to the imaginary part of 
the self-energy of the massive particle (Figure 9), also the transition ampli- 
tude related to Figure 8 appears. 
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